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E X P E R I M E N T A L  A N D  N U M E R I C A L  M O D E L I N G  

OF T H E  T U R B U L E N T  W A K E  OF A S E L F - P R O P E L L E D  B O D Y  

N.  V. Gavri lov,  A. G. D e m e n k o v ,  l 

V.  A. K os t omakha ,  and G. G. C h e r n y k h  I 
UDC 532.517.4 

The development of the turbulent azisymmetric wake of a self-propelled body is modeled ex- 
perimentally and numericaUy. Experimentally, th, e self-propulsion regime was implemented in 
the wake of a body of revolution whose hydrodynamic resistance was completely compensated 
by the pulse of a swirling jet rejected from its trailing part. and the jet-induced swirling was 
counterbalanced by the rotation of a part of the body surface in the opposite direction. The 
second-order semiempirical turbulence model that includes the differential equation of motion, 
the transfer of the normal Reynolds stresses, and the dissipation rate was used to describe this 
wake mathematically, and the nonequilibT~um algebraic relations were used to determine the 
tangential stresses. A satisfactory agreement between the. calculation results and the experi- 
mental data is shown. Degeneration of the distant turbulent wake is investigated numer~ically. 

1. The problem of the evolution of the turbulent wake of a body of revolution that moves uniformly 
and rectilinearly in an unboml(led lmmogeneous incompressible fluid is considered. The body is equit)pe(1 with 
a l)rot)eller whose thrust compensates for the (lrag, so that the longitudinal component  of the total  redundant 
momentum ,1 in the wake is zero. Generally, the propulsor can swirl the fluid in the wake: therefore, for the 
body not to rotate al)out its longitudinal axis, swirling should be compensated  for in one way or another. 
Here the total  moment of momentum 5I  in the wake is equal to zero. This mode  of motion is called a mode 
of self-propulsion. 

In all the previous exl)erimental studies in which the wake of a self-propelled t)ody was modeled and 
studied, nonswirling [1-7] or swirling [S, 9] jets were used as l)ropulsors or the required thrust was generated 
1)y a propeller [IO-12]. In the at)sence of swirling, attention was given to satisfaction of the condition J = 0, 
whi('h is sufficient for creation of the mode of self-propulsion. However. in the presen('e of rotat ional  motion 
in the wake, the ('ircumferential velocity component not only contributes to the total momentum, but  also 
results in the emergence of the moment of momentum in the wake. 

It follows from an analysis of the cited literature that  in all the experiments  peribrmed with flow- 
swirling prol)ulsors, appropriate forces were taken up by one stru('ture or ano ther  that supports the model 
(for example, tension memt)ers for wind-tunnel experiments), and the quan t i ty  M calculated for the wake 
of su('h a model is not zero. In this study, this (lrawback of the experimental  se l f  propulsion modeling is 
eliminated owing to the construction of a mo<M that makes it possil)le to change the thrust of a i)ropulsor 
in<lepen<h~ntly an<l ('onli)ensate ti)r the flow swirling <'reated by this propulsor. 

The first studies con('erning mmmri('aI modeling of swirling turbulent  wakes are reviewed by Shets 
[10]. In [10], calculation results obtained with the use of a simi)lified turt)ulenee e-model are presented an<l 
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the drawbacks related to tile use of the algebraic Reynolds-stress models and the more general second-order 
differential models, which, probably, are due to incomplete exi)erimental data,  are indicated. A calculation- 
theoretical modeling of swirling wakes was performed in [13-15], in wlfich the self-similarity and degeneration 
taws for wakes with a different degree of compensation relative to the moment of momentum and the influ- 
ence of background turbulence on the flow evolution in the wake was studied. The  classical (e-r of 
turbulence was used in these studies. Degeneration of the Reynolds stresses was not analyzed. The strong 
sensitivity of the defect of the longitudinal velocity component to the initial unbalance of the momentum and 
the weak dependence of the circumferential velocity component, the turbulence energy, and the wake width 
on it were shown. An analysis of the asynlptotic behavior of average-velocity pert  t~ bations has allowed one 
to establish that  the presence of e ~ n  a small tangential velocity component noticeably influences the flow 
pattern. 

The swirling momentumless turbulent wake with the nonzero moment of momentum that  is based on 
the hierarchy of second-order semiempirical turbulence models is modeled numerically in [16, 171. It is shown 
that  a satisfactory agreement with experimental data [9] cast be obtained with  the use of a mathematical  
model that includes the differential transfe, r equations of the normal Reynolds stresses and one tangential 
Reynolds stress and nonequilibrium algebraic relations for other tangential stresses. 

Based on an analysis of the results of calculation-theoretical modeling of swirling turbulent wakes, one 
can conclude that  there are no satisfactory numerical models of the swirling turbulent  wakes of self-propellant 
bodies. The present work was peribrmed with a view toward bridging the gaps available in the s tudy of this 
problem. 

2. To describe the flow, we use the following system of averaged equations of motion, continuity, and 
transfer of normal Reynohls stresses (u.r-'}, (v'2}, and (u/~} in the al)I)roxinmtion of  a thin shear layer: 
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Here (x,,r, 0;) is the cylindrical coordinate system with tile origin at the trailing edge of tile body (Fig. 1), tile 
x taxis is directed in the direction opposite to the body motion, U, V, W, u r, v', and w t are the correspomling 
velocity components of the averaged and pulsatory motions, (u'v'}, <u"u/>, and ( t /w ' )  are the tangential 
Reynolds stresses, and e = (<u "2) + <'v '2> + (wr2))/2 is the turbulence euergy. Tile angle brackets mean 
averaging. The  ternls with molecular viscosity are discarded in the smallness assmnption. 

The tangential turbulent stresses are deternlined from the Rodi nonequilibrium algebraic relations [18] 
OU 

<,,'v'> = ~<.j2> -bT" (7) 

OW OU <.~.'.w'> = ~, (<.,/.,,'> 
-bT. + <.,/.u/> 3-T. )' (8) 

<,/,,,,> = -, (<j,>,. o(,v/,.) w ,) 
o,,------7 + --,- (<'/''> - <~,,2>) , (9) 

where ~, = - A , e / ~  and A, = (1 - C. , ) / (C ,  + P / e  - 1). 
The dissil)ation rate ~ w~ks found by solving tile differential transfer equat ion 

+v0  0 (..%...> 
U 7.,,. 0,. .,- 0,. ~ + ( < , P  - G,,,e). (10) 

hi  Eqs. (4)-(6) and (1(1) and relations (7)-(9), tile anlount of turbulence energy produced owing to tile 
averaged nlotion has tile fornl 

OU O(W/r) 
p = _ (<,,'.,/> 

+ <~''"'>" o,. / 
I l l  Ibrmulas (1 ) - ( i 0 ) ,  the empi r i ca l  constants are as fol lows: Cs -- 0.22, Cs = 0.17, (l -- 0.93, CI  -- 0.6, 

C'2 = 2.2, C~-I = 1.45, and C~r = 1.92. Tile variables of tile problem were dimensionalized by  using tile 
mldisturbed-flow velocity U0 and tile characteristic length D (diameter of the body) as the scales. Tile 
mathematical model given above is based on tile model from [19]. Tile s t ruc ture  of the nlathematical  nlodel 
is due to the experience ill mmlerical modeling of nonswirling momentumless turbulent  wakes in a linearly 
stratified fluid [20]. Tile calculations of the present study represent tile initial stage of the problem of nmnerical 
modeling of the swirling turbulent wakes of self-propellant bodies in a stratified fluid. 

As tile initial conditions for x = a:0, we set tile transverse distributions U, IV, _r and (?tilt.i)' ' (i = 1, 2. 

and 3) consistent with exI)erimental data. Tile undisturbed-flow conditions were specified as r --+ oc and tile 
symmetry conditions for U, ' ' <'ttitti). and s for , ' =  0 and the antisynmletry conditions for V and It ' :  

, t t t 05 OU _ O ( u (  Li____~ ) _ - V = W = 0 .  

Or Or" Or 
'file conservation laws for the total redundant monmnta and tile nloment  of monmntunl follow from 

tile mathematical model and appropriate initial and boundary conditions: 
oo /,( . l (x )  = 27rpo UUI + - 2 

0 

(11) 
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o o  

M(~) = 2~po ./(UW_ + <.dw'>), "2 d,. = M(xo).  (12) 
o 

Here UI = U - U0 i~, the defect of the longitudinal velocity component  and P0 = const  is the fluid density. 

Tiie numerical realization of the model is based on the use of a first-order, finite-difference a lgor i thm 

of the "k':proxinmtion on mobile grids tha t  is conservative relative to tile conservat ion  laws (11) and  (12). 

The  algorithm and its testing are given in detail in [i6, 2I]; therefore, we only no te  tha t  in approx imat ing  

Eq. (2), in the half-integer nodes of the grid, in the w~riable r the values of the turbulent-viscosi ty coefficient 

Utw = cq (v r-)) were calculated from the formula [22] 

2(,~t,,,)~J:L(.tw)~ 
(,'t~)~+~/2 = (,~,~.)~• + (vt~,)~" 

From the difference approximation (2), we obtain a finite difference analog of the conservation law 

J t  (x) = 2r UUt - r '  - = 

0 r 

equiwfient to (11). Here it is assumed tha t  all appropriate  mathemat ical  p rocedures  are correct. 

3. The experiments were carried out in a low-turbulence wind tunnel whose length is 4 m and whose 
characteristic transverse cross section is 0.4 x 0.4 m. The disposition of the model  is shown schematically in 

Fig. 1. The model is made from an a luminum alloy and is a body of revolut ion composed from half of an 

ellipsoid of revolution with 25- and 35-ram senfiaxes in the leading part ,  a circular  cylinder of length 40 m m  
in the central par t .  and the second half of the ellil>,fid in the trailing part .  T h e  to ta l  length of the model  is 

110 ram. and its diameter  is D = 50 ram. 
The model  consists of mobile and fixed par ts  (Fig. 1, 1 and 2, respectively).  In the fixed pa r t  of the 

model, wlfich is supported by the compressed air-supply tube 3 and the tension m e m b e r s  4, an injector and a 

DC micromotor are builtin. The dimneter of the out tmt orifice of the injector is 6 ram.  The mobile par t  of the 

model is lint into rotation by the micromotor  through an internal frictional hook. T h e  model is posit ioned on 
the axis of symmet ry  of the working par t  5 of the tube at zero angle of a t tack to the  inconfing flow. The  mode  

of operation of the injector and the rotational w;locity of the model surface were chosen by varying the air 

flow rate through the injector and the power-supply w)ltage of the micromotor.  T h e  self-propulsion condit ion 
( J  = 0 and M = 0) wa,s assumed to be satisfied if the ratio of the positive pa r t  of the integrand in (I1)  and 

(12) to the negative part  was 1.00• The experiments were performed for an air  velocity of U0 = 15 m/ see  

in the working par t  of the wind tmmel,  which corresponds to the Reynolds n u m b e r  Re, = UoD/u = 5- I04 (u 

is the kinematic-viscosity coefficient). 
The measurements  were carried out by a thermoanenmmeter  equipped wi th  a linearizer. We used 

single- and double-filament gauges made from gold-plated tungsten of d iamete r  5 # m  and length 1.25 ram. 

According to the measurement technique of [9], the gauges at each measuring poin t  were oriented relative to 

the mean-velocity vector. The experimental  da ta  were computer-processed. 
4. In the experiments, the transverse distributions of three components  of  the  average-velocity vector  

and the normal and tangential Reynolds stresses in the cross sections of the wake :riD = 5, 7.5, 10, 20, 30, 
and 46 were measured. The profile of the turlmlence-energy dissipation ra te  c was found only for a'/D = 10. 

At the same time, before the nlain series of experiments, in which the quanti t ies J and  M were assmne(t to be  

zero. the profiles Ul and (u '2) 1/2 were measm'ed under the conditions where the mol)ile part  of the model  did 

not rotate and the jet in the trailing par t  was not blown ,rot. Th(.- da ta  were used a t  the stage of instal lat ion 

of the model at  zero angle of a t tack and to calculate the drag coefficient of the b o d y  cz = 8F~/(TrpoD'-'Uo2), 
o o  

where the force of hydrodynamic resistance wtm calculated from the formula F ,  = 2rrp0 ./- UoUt r 
g a  

&.. We 

0 

obtained cz = 0.2, which indicates that  the model is well streamlined. 
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In the m o d e  of self-propulsion, tile distributions Ut (*', x) always have tile characteristic feature, i.e., 
tile regions in which U, < 0 and Ul > 0. The negative values of UI, which are observed oil the profiles in 

Fig. 2, are caused by the fluid decelerated in the boundary  layer on the body, whereas the positive values UI 
are ensured by a j e t  prolmlsor. Solid curves 1-3 in Fig. 2 show calculation results for x/D = 2(/, 30, and 46. 

The  initial d a t a  were set for x/D = 10. 
In the calculations,  the bounda ry  conditions for Ul, IV, e, ~. and (u,'i 2} were transferred fi'om infin- 

ity on tile line r = r .  = 4D (c. was determined in nmnericat experiments)�9 The  main calculation results 

were obtained on an r-uniform grid wi th  step h,/D = 0.02. The grid step h~/D on the longitudinal coor- 

dinate increased and  changed from 0.01 by the formula of tile member of a geometrical l)rogression with a 
dcnonlinator equal  to 1.006. To moni to r  the accuracy, a calculation fbr hr/D = 0.04 and the initial value 
of h~:/D = 0.02 was carrie(1 out. T h e  deviations of tile grid solutions in a norm tha t  is a grid anah)g of the 

nornl of contimlous-flmction sl)ace did not exceed 1%. 
One can see tha t  the numerical  model constructed describes quite exactly the behavior of UI (r, x) ill 

the, preaxial wake zone and With smal ler  accuracy at the periphery. The latter is connected with the drawl)ack 

inherent ill the second-order ma themat i ca l  models of turbulence, which do not incorporate flow internfittency 

in the outer regions of tile wake�9 
The  s ame  injector as in the experinmnt with a sphere [91 was used as a device which swirls tile flow 

and creates a j e t  t ha t  comt)ensates for the body drag. The rotation in the jet  was counterclockwise. To 
a t ta in  the zero to ta l  moment  of m o m e n t m n ,  a par t  of the body surface rota ted in the opposite direction. 

The  measured dis t r ibut ions of the circumferential component  of the average-velocity vector IV(r, :r) depicted 
in Fig. 3 show t h a t  tile fluid ro ta tes  in one direction in tile near-axial region of the wake and ill the other 

direction in the peripheral  annular region of the wake. The presence of this additional rotary motion also 

determines the basic  differences of  the  realized mode of self-i)ropulsion from those studied previously. For 

small r. the re la t ion  IV(r, z) ~ r is fiflfilled, i.e., the fluid rotates as a solid. 
The m a x i m u m  wdue of the circumferential velocity coml)onent is of the same order as tile value of tile 

defect of the longitudinal  velocity comt)onent and is much smaller than the velocity of the in('onling flow, 
whMl corresl)onds to the case of weak swirling. Nevertheless, tile contribution of tile rotational motion in 

the wake to ,1 was taken into account,  and it amounted to 8 % for :r/D = 5 and 2(7e of tile positive part  of 

the first te rms in the integrand ill (11) for :r/D = 10. 
As one can  see in Fig. 3, the calculated profiles IV(r, x) are in agreement with the experimental data  

throughout  the wake region. The  nota t ions  ill Figs. 3 and 4 are the same as in Fig. 2. 
The radial  component  of the average-velocity vector is negligible, as in the experiments with a sl)here 

[9]. 
623 



~ / uo ~ , 
i 
!: 

0.004 " 

a 

0.002 
o 

0 : 
.I 2 3 � 9  :8. 

0 0.5 1.0 1.5 

U~o, IV, 
eo, t'l/2 

10-3 

10-5 

I0-I  

�9 @ ';: .. 

f t : - I  ~ -  
El -,. ,. ". X-1  9 

�9 i.'~ " ~: " -" -" ' 
" ' : ~ -  j r  ::i'-~ 

! 21 

- 4 ]  

x O  2 

x - O  6 

r ~  . . . . .  10 10 2 10 3 x/D 

Fig. 4 Fig. 5 

In momen tumles s  swirling-free wakes, the main body  of kinetic energy is concentrated in turbulent 

fluctuations a l ready  a t  small distances from tlle body [23]. A similar situation occurs in this c~se as well (a 
o o  

In  part icular ,  the ra t io  of  the total  kinetic energy of the pulsatory motion / e r  dr to the swirling wake). 
. /  

cc 0 

total kinetic energy  of the average mot ion  --/'(U'~/2 + W 2 / 2 ) r  dr is 4.9 for a wake cross section of x/D = 5 and 
. J  
0 

6.6 for :r/D = 30. W i t h  increase in a', this ratio grows and is 49.2 for .r/D = 200 according to tile calculation 

results. Tile significant level of turbulence energy at a small distance from the body  is supported by the 

radial gradients of  the  longitudinal and  circumferential velocity components and corresponding tangential 
stresses. The  exper imen ta l  results show tha t  bo th  components  of turbulence-energy generation in the energy- 

turbulence balance  equat ion are impor tan t ,  the rotational average-velocity component  playing a larger role 

in the vicinity of the  body. This is shown by the ratio 

f <'.'v'> OUl _sT rd,,.//<v,w, ~0(nT") ,.~ d,'. 
0 0 

which is equal to 0.08 for x/D = 5; however, already for the wake cross section (.r,/D = 30), tile influence of 

the longitudinal veloci ty  component  becomes more noticeable and the ratio is 1.3, for z / D  = 200, this ratio 

is 2.3. 
In the course of  calculations, the rat io of tile turbulence-energy generation P owing to the averaged- 

motion gradients  to the  dissipation ra te  ~ versus x/D was analyzed. Vs obtained P/~ < 0.3 for x/D C [10.46]. 
It  is known tha t  the  classical (e-z) -model  of turbulence is suitable only for flows characterized by P/.~ ,~ 1: 

therefore, here we use a more complicated mathemat ica l  model of turbulence. 
The  opera t ion  of the jet propulsor  leads to an increased level of turbulence energy in tile neighborhood 

of the wake axis. Th i s  is seen in Fig. 4. where the transverse distributions of the pulsatory energy at different 

distances from the b o d y  are shown. In contrast  to similar structures behind a towed body, the maximum 

wflues of e are reached on tile wake axis in this case. The  calculation results for x /D = 20. 30, and 46 (solid 

curves 1 3) agree well with the exper imenta l  data.  
Figure 5 i l lus t ra tes  tlm change in the calculated and nmasured characteristic scales of turbulence as a 

flmction of dis tance f rom the body. Here Ut0 = IUmI/Uo is the axial value of the defect of the longitudinal 

velocity componen t  ( the solid curve), ~-V = IV m,~x/UO is tile maxinmm value of the circumferential velocity 

compo~mnt in this cross section of the wake (dotted curves), 60 = eo/U~ 2) is the turbulence energy on the 
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wake axis (tile dot-and-dashed curve), and ?1/2 = (rl/~/D) " 10-2 is tile characterist ic  scale of tile wake width 

(the dashed curve) determined from the condition (u r2) 1/2 (rl/2, x) = 0.5 (u '2} I/2 (0, x) [( u r2) 1/2 (0, x) is the rms 

value of the fluctuations of the longitudinal velocity componen t  oil tile wake axis]: points 1-4 refer to the 

corresponding experimental  data. 
For correctness of the larg~distance calculation results,  it is necessary to ensure the closeness to zero 

of tile initial values of J and M. With this in view, the exper imental  distr ibutions were approximated by 

cut)ic splines, and the needed smalhmss of the values of  J and M was then  reached by snmlt variations 

ill the resulting fimctions for large r. Two variants of calculations were carried out: J = 5.5 - 10 -13 and 
M = 5.4- 10 -~l (for 10 ~< x/D <~ 3315) in the first var iant  and J = 2 . 2 . 1 0  -12 and M = 4.2- 10 -4 ill the 

second variant (for 10 ~< x/D ~ 1464). 
The calculations results for both  wtriants agree wi th  the experimental  da ta ,  ahnost coinciding for the 

scale functions Ui0(x), e0(x), and rl/2(x) in the entire range  of x /D values considered. Tile main distinction 

is observed in the behavior of the function tl4n,,x(X) for x / D  > 50. 
At large distances fronl the body, the dependence of all the scale functions on x is a power dependence 

(solid thin straight lines ill Fig. 5); within the framework of the mathemat ica l  model  used, this is one necessary 

indication that  the self-similarity of the turtmlent mot ion in the  wake is reached. V~'e note the following specific 

features. If in tim turbulent  wakes behind tile towed bodies  the self-sinfilarity is generally reached already at 
small distances downstream and, primarily, for first-order momenta ,  in the momentumless  and "momentless" 
wake all asymptot ic  behavior is first observed for the characterist ic  t ransverse dinmnsion of the wake and 

then for turl)ulence energy, the characteristic scale of the peripheral  velocity l~Vmax, and for the defect of the 

hmgitudinal w;locity component  Um only for x/D > 1000. 
For the first variant of calculation, for large x /D  the  circumferential velocity component decreases as 

W,,,ax(X) ~ :r -''5, i.e., more rapidly than  the axial-velocity defect Urn(x) ~ x-1.9 and, hence, swirling can be 

ignored at a certain moment.  
It is noteworthy that  an analysis of the self-similarity of tile turbulent  wake R)r J = M = 0 is very 

COml)licated (see, e.g., [15]). Our elementary munerical analysis  of tile ~symptot ic  degeneration is base(l on 
t)rocessing of tile nunmrical results. I t  is of interest tha t  in the  ttmoretical s tudy  of [24] of swirl laminar flows 

of a self-propelled sl)here, the, asymptotic  rel)resentations Uto(x) ~ x -2 and tVmax ~ x -2"5 close to ttmse 

given ill Fig. 5 were obtained on the basis of the exact  Navier-Stokes  equations.  
Despite tile closeness of the indicated de, generat ion laws at all the distances studied, the flow in the 

wake was a develope(t turbulent flow. This is SUl)ported by the vahm of the turbulent Reynohts nmnber 
Re,\ = ~ A / u  calculated according to the Taylor microscale A = v/10eu/e.  I t  follows from tile calculations 

that  tim axial wdues of Rex E [37:801 ill tim range, of z / D  E [10; 2000]: here we have Re:, ,,- x -~ for large 

:riD. 
In the second w~riant of calculations, at large dis tances from the body  the self-sinfilar wake with a 

finite nonzero moment  of momentum occurs. For x /D > 300, we have t!r ~ x -~ which agrees with the 
condi t ion / l I  = coast  [see f()rmula (12)] and the. resulting value of the pa rame te r  in the wake-expansion law 

1"1/2 ,',., 2. .0.2. 

Compared with the wake, experiments for a towed body, ill our exper iments  perfornled at the same 

(listance :riD = 5, the wake width is 1/3 smaller, which is due to tile creation of a jet  propulsor of rarefaction 

on tile wake axis and retardation of tim separation of bounda ry  layers on the trailing surface of the body. 
Taking into account this circumstance au(l tile considerably smaller rate of increase ill the trans~x~rse (limen- 
sions of the wake [,'l/2(:r) ~ :r ~ [i)r axisymmetric tu r lmhmt  wakes of towed bodies], one can conclude that 

swirling in the inonlentumless wake plays a significant stal)ilizing effect. 
Another necessary in(li('ation of reaching the self-similarity is the affine similarity of the, transverse 

profiles of the dimensionless turbulence characteristics in the  wake. All example  of realization of this mode 
of motion in the wake is the self-similar profiles of the defect  of the longitudinal and circmuferential velocity 
components and the turbulence energy in Fig. 6 (the do t t ed  curve refers to the calculation for x/D = 338, 
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tile dot-and-dashed curve to tile calculation for x / D  = 2000, and the solid curve to the calculation for 
.~'/D = 3315). As tile asymt)totic degeneration is reactmd (see Fig. 5), a similarity of the distributions is 
ol)scrved on the site x / D  > 1000 in tile wake. 

Thus. the dynamics of tile axisymmetric wake of a self-propelled body has been modeled experimen- 
tally. A nmnerical flow model has been constructed with the use of the second-order semieInpirical model 
of turl)ulence. TILe calculation results agree well with the experimental data. A numcrical analysis of tile 
degeneration of" a distant turbulent wake has been carried out. 

This work was partially SUl)I)orted by the Russian Foundation for Fundamental  Research (Grant Nos. 
95-01-01339 and 98-01-00736). 
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